之前写过一个系列文章: 《博客搭建攻略(一):平台选择》 《博客搭建攻略(二):工具推荐》 《博客搭建攻略(三):创造收益》 在该系列中曾经推荐过阿里云“全民云计算”的优惠,3年价格非常给力,很适合我们这些个人玩家把玩一阵了。 最近因为工作原因开始接触腾讯云,发现腾讯云也推广了类似的大力度推广方案,所以就整理了一下这两个供应商的几个推广配置的供大家参考和对比。 可以看到1核1G和2核4...

通过Trace ID和Span ID已经实现了对分布式系统中的请求跟踪,而这些记录的跟踪信息最终会被分析系统收集起来,并用来实现对分布式系统的监控和分析功能,比如:预警延迟过长的请求链路、查询请求链路的调用明细等。此时,我们在对接分析系统时就会碰到一个问题:分析系统在收集跟踪信息的时候,需要收集多少量的跟踪信息才合适呢? 理论上来说,我们收集的跟踪信息越多就可以更好的反映出系统的实际运行情况...

在本节内容之前,我们已经对如何引入Sleuth跟踪信息和搭建Zipkin服务端分析跟踪延迟的过程做了详细的介绍,相信大家对于Sleuth和Zipkin已经有了一定的感性认识。接下来,我们介绍一下关于Zipkin收集跟踪信息的过程细节,以帮助我们更好地理解Sleuth生产跟踪信息以及输出跟踪信息的整体过程和工作原理。 数据模型 我们先来看看Zipkin中关于跟踪信息的一些基础概念。由于Zipk...

通过上一篇《分布式服务跟踪(整合logstash)》,我们虽然已经能够利用ELK平台提供的收集、存储、搜索等强大功能,对跟踪信息的管理和使用已经变得非常便利。但是,在ELK平台中的数据分析维度缺少对请求链路中各阶段时间延迟的关注,很多时候我们追溯请求链路的一个原因是为了找出整个调用链路中出现延迟过高的瓶颈源,亦或是为了实现对分布式系统做延迟监控等与时间消耗相关的需求,这时候类似ELK这样的...

通过之前的入门示例,我们已经为trace-1和trace-2引入了Spring Cloud Sleuth的基础模块spring-cloud-starter-sleuth,实现了为各微服务的日志信息中添加跟踪信息的功能。但是,由于日志文件都离散的存储在各个服务实例的文件系统之上,仅仅通过查看日志文件来分析我们的请求链路依然是一件相当麻烦的差事,所以我们还需要一些工具来帮助我们集中的收集、存储和...

通过上一篇《分布式服务跟踪(入门)》的例子,我们已经通过Spring Cloud Sleuth往微服务应用中添加了实现分布式跟踪具备的基本要素。下面通过本文来详细说说实现分布式服务跟踪的一些要点。 分布式系统中的服务跟踪在理论上并不复杂,它主要包括下面两个关键点: 为了实现请求跟踪,当请求发送到分布式系统的入口端点时,只需要服务跟踪框架为该请求创建一个唯一的跟踪标识,同时在分布式系统内...

通过之前的N篇博文介绍,实际上我们已经能够通过使用它们搭建起一个基础的微服务架构系统来实现我们的业务需求了。但是,随着业务的发展,我们的系统规模也会变得越来越大,各微服务间的调用关系也变得越来越错综复杂。通常一个由客户端发起的请求在后端系统中会经过多个不同的微服务调用来协同产生最后的请求结果,在复杂的微服务架构系统中,几乎每一个前端请求都会形成一条复杂的分布式服务调用链路,在每条链路中任何一...

由于最近搞运维平台的事,对接了不少第三方系统,JIRA就是其中一个。在使用其REST API时发现了不少坑,而这些内容中文搜不到什么可以提供参考的信息,所以从今天开始抽时间简短的分享一下。以帮助也有这些需求的朋友们。 第一篇,先拿Add user to group来说说,该接口的文档说明如下图所示: 从接口名称来看,大家很容易就能判断,这个接口是用来将用户加入到某个组的。但是!再仔细看...

通过上一篇《消息驱动的微服务(消费组)》的学习,我们已经能够在多实例环境下,保证同一消息只被一个消费者实例进行接收和处理。但是,对于一些特殊场景,除了要保证单一实例消费之外,还希望那些具备相同特征的消息都能够被同一个实例进行消费。这时候我们就需要对消息进行分区处理。 使用消息分区在Spring Cloud Stream中实现消息分区非常简单,我们可以根据消费组示例做一些配置修改就能实现,...